
LLNL-TR-664285

Code profiling Using Multiple
Profilers on Multiple Machines

K. K. Ghosh

November 13, 2014

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Code Profiling Using Multiple Profilers on
Multiple Machines

Koushik Ghosh

1 Tools Inter-comparison Project (TIP) .. 4

1.1 Motivation and Summary ... 4

2 General Capabilities and Strength of Tools... 5

2.1.1 Sampling, Instrumentation, Tracing .. 5

2.1.2 Binary Instrumentation ... 5

2.1.3 Source Instrumentation .. 5

2.1.4 Hardware Counters and their Values Using PAPI - advantages and disadvantages 5

2.2 Cray Performance Analysis Tools (PAT) .. 5

2.3 Open Speedshop (OSS) ... 6

2.4 TAU .. 6

2.5 Other Tools Considered .. 7

2.5.1 MAP (Allinea) .. 7

2.5.2 HPC Toolkit (Rice University)... 7

2.5.3 Vampir-trace/scoreP/Vampir (TU Dresden) ... 8

2.5.4 mpiP (LLNL) ... 8

2.6 Comparison of Strengths .. 8

3 Description of Codes Used .. 9

3.1 AVUS.. 9

3.2 HYCOM .. 9

3.3 GAMESS ... 10

4 Description of Supercomputing Platforms Used for the Study .. 10

4.1 Cray XE6 AMD Opteron 6300 (Interlagos) 2.5 GHz @ ERDC ... 10

4.1.1 System Location .. 10

4.1.2 Node Description .. 10

4.2 SGI ICE X Intel Xeon E5 2670 0 (Sandybridge) 2.6 GHz @ AFRL .. 11

4.2.1 System location ... 11

4.2.2 Node Description .. 11

4.3 CRAY XC30 Intel Xeon E5 2697 (Ivybridge) 2.7 GHz @ NAVO ... 11

4.3.1 System location ... 11

4.3.2 Node Description .. 11

5 Building Executables for Profiling ... 12

5.1 General Considerations ... 12

5.1.1 Static vs. Dynamic Executables ... 12

5.1.2 Instrumentation of User Code .. 13

5.1.3 Dyninst API .. 13

5.1.4 Modules and Dotkits ... 13

5.1.5 Compiler versions.. 14

5.1.6 MPI Implementation and Compatibility Issues ... 14

5.1.7 Wrappers and scripts for compilation and linking .. 14

5.2 OSS Build Procedures .. 14

5.3 PAT Build Procedures .. 14

5.3.1 The .apa File .. 15

5.3.2 Keeping Intermediate Files ... 15

5.3.3 Building codes to reduce volume of data collected .. 15

5.4 TAU Build Procedures ... 16

5.4.1 Choosing the right Makefile .. 16

5.4.2 Rules for AVUS .. 16

5.4.3 Rules for GAMESS ... 16

5.4.4 Rules for HYCOM ... 16

5.4.5 Keeping (Intermediate) Files for use during post-processing ... 17

5.4.6 Building codes to reduce volume of profile data .. 17

6 Executing Codes to Collect Performance Data ... 18

6.1 OSS .. 18

6.1.1 Example script for submitting a batch job .. 18

6.1.2 Env Vars (experiment name is the middle part of the name of the variable) 19

6.1.3 Expected Output Files ... 19

6.1.4 Do’s and don’t’s .. 19

6.2 PAT .. 19

6.2.1 Example batch script ... 19

6.2.2 Env vars ... 20

6.2.3 Expected Output files .. 20

6.2.4 Do’s and don’ts ... 20

6.3 TAU .. 20

6.3.1 Example batch script for TAU.. 20

6.3.2 Expected Output Files ... 21

6.3.3 Do’s and Don’ts ... 21

6.4 Code specific Suggestions ... 21

6.4.1 AVUS .. 21

6.4.2 GAMESS ... 21

6.4.3 HYCOM .. 21

6.5 Reducing Volume of Performance Data.. 21

6.5.1 MPI only .. 21

6.5.2 Control Sampling Rate .. 21

6.5.3 Control HWC threshold ... 22

6.5.4 Filters to ignore frequently called small functions ... 22

6.5.5 Throttle etc.. 22

6.6 Reducing Data Collection Overhead ... 22

6.7 Techniques For Faster I/O ... 22

7 Post-processing/Visualization opportunities and utilities .. 22

7.1 Cray PAT .. 22

7.2 OSS .. 23

7.3 TAU .. 24

7.4 Dealing with Large Amounts of Profile Data ... 25

7.4.1 Select Rank .. 25

7.4.2 Select Performance Metric ... 26

7.4.3 Using CLI (command line interface) .. 26

8 General Strategy for Analysis of Tools .. 26

9 Measured Results .. 26

9.1 HYCOM on GARNET (Cray XE6 w/ AMD Interlagos) Double Precision Operations using

PAPI_FP_OPS ... 27

9.2 AVUS Platform Inter-comparison Experiment (SGI ICE X w/ Sandybridge vs. Cray XE6 w/

Interlagos) Measuring PAPI_DP_OPS ... 27

10 Which Tools To Use? ... 27

11 Future Work .. 28

12 Acknowledgements ... 28

13 Documentation ... 29

13.1 Cray PAT .. 29

13.2 OSS .. 29

13.3 TAU .. 29

13.4 Allinea MAP ... 29

1 Tools Inter-comparison Project (TIP)

1.1 Motivation and Summary
Use of performance analysis tools to understand bottlenecks of large simulation codes is a common
practice that is becoming even more significant with the advent of many-core, multi-core and
accelerator-enabled HPC systems. While several sophisticated tools are available, each has assorted
strengths and weaknesses.

Ease of use is an important factor that varies from tool to tool. In general, the learning curve of a
complicated tool will often discourage an eager application developer from investing too much time into
learning how to use it.

Tool robustness is a quality that is of utmost importance to a user/developer of a large HPC simulation
code. The unavoidable increase in cores per chip, chips per node and nodes per system is also
demanding scalability. In addition, there are software issues related to language features such as
template-heavy C++ codes and interlanguage issues such python interface to C++ codes. Improving
robustness will definitely/always be a work in progress for tool developers. The best way to improve
quality and robustness is to stress-test the tools with these million-line production codes and keeping
the tool developers updated about the outcome of the use of the tools with real-life data-sets.
Dealing with large amount of profile data and/or reducing the amount of data collected without
compromising quality of information also is a feature that has to be offered by a robust tool.

Tool portability among various platforms is another issue, especially for open-source tools. Within the
DSRC arena there are several large supercomputing systems, such as AMD-based systems from Cray,
Intel-based systems from Cray, and Intel-based systems from IBM. The tools should be usable on all of
these systems and should provide consistent, trustworthy performance data regardless of the platform.

Finally there is always a request from users for “insight”, instead of mountains of performance data. This
issue is much harder to tackle than it seems but is something that could use innovative work, especially
as we approach extreme-scale computing.

To address the concerns voiced above, it was thought fit to initiate a tool inter-comparison project that
would involve looking at multiple, tools, evaluate them on multiple DSRC machines and execute multiple
codes with different computational characteristics.

 Understand tools’ features: complexity, flexibility, ease of use, ramp-up time

 Check if performance data from tools match one another

 Check robustness of tools and investigate techniques for robust and reliable measurements

 Build confidence in tools’ output

 Look for application specific differences exposed by executing multiple simulation codes

 Look for platform dependent differences in our ability to deploy these tools

 Look into strategies for managing size of profiles and reducing volume of post-processing data

2 General Capabilities and Strength of Tools

2.1.1 Sampling, Instrumentation, Tracing

Most tools support two categories of experiments

 Sampling - Build asynchronous experiments
o Capture values from the program counter and/or call stack at specified intervals or when a

specified counter overflows. Later, if requested, display the call path information about the
application as well as inclusive and exclusive timing data for functions or code-blocks.

 Sampling can be useful as a starting point
o provides first overview of the work distribution

 Tracing - Event-based experiments
o count some events such as MPI, I/O, the number of times a specific system call is executed

 Tracing provides most useful information
o high overhead if the app runs on a large number of cores for a long period of time

2.1.2 Binary Instrumentation

2.1.3 Source Instrumentation

2.1.4 Hardware Counters and their Values Using PAPI - advantages and disadvantages

What is PAPI?
Open Source software from U. Tennessee, Knoxville: http://icl.cs.utk.edu/papi
Middleware to provide a consistent programming interface for the performance counter hardware found in most
major micro-processors.
Countable events are defined in two ways:

 Platform-neutral preset events

 Platform-dependent native events
Presets can be derived from multiple native events.
All events are referenced by name.

2.2 Cray Performance Analysis Tools (PAT)

Using PAT is a three step process:
use pat_build first to instrument your program and capture performance data
use pat_report to process the raw data and convert it to .ap2 format
use Cray Apprentice2, to visualize and explore the resulting data files

Strengths:
 Provide a complete solution - instrumentation, measurement, analysis, visualization of data

 Performance measurement and analysis on large systems

 Automatic Profiling Analysis

 Load Imbalance

 HW counter derived metrics

 Predefined trace groups provide performance statistics for libraries called by program (blas, lapack, pgas
runtime, netcdf, hdf5, etc.)

 Observations of inefficient performance

 Data collection and presentation filtering

 Data correlates to user source (line number info, etc.)

 Support MPI, SHMEM, OpenMP, UPC, CAF, OpenACC

 Access to network counters

 Minimal program perturbation

2.3 Open Speedshop (OSS)

Strengths:

 Comprehensive performance analysis for sequential, multithreaded, and MPI applications

 No need to recompile the user’s application.

 Supports both first analysis steps as well as deeper analysis options for performance experts

 Easy to use GUI and fully scriptable through a command line interface and Python

 Supports Linux Systems and Clusters with Intel and AMD processors

 Extensible through new performance analysis plugins ensuring consistent look and feel

 In production use on all major cluster platforms at LANL, LLNL, SNL, NASA and DoD

2.4 TAU

TAU stands for Tuning and Analysis Utilities. TAU is a 18+ year project.

 Comprehensive performance profiling and tracing

 Integrated, scalable, flexible, portable

 Targets all parallel programming/execution paradigms

 Integrated performance toolkit

Open|SpeedShop

 Instrumentation, measurement, analysis, visualization

 Widely-ported performance profiling / tracing system

 Performance data management and data mining

 Open source (BSD-style license)

 Easy to integrate in application frameworks

 http://tau.uoregon.edu

2.5 Other Tools Considered

2.5.1 MAP (Allinea)

2.5.1.1 Features

 clear, low-overhead MPI profiling

 Re-compilation / instrumentation of code not needed

 Compile code with -g

 start Allinea MAP as you would mpiexec:
o $ map -n 128 gamess inputName

 shares the common Allinea tools platform developed for Allinea DDT

 tested on everything from the world’s largest machines to embedded processors.

 After program finishes
o MAP shows the lines of source code that took the longest
o time spent computing in green and communicating in blue

 MAP look and feel similar to DDT’s - the source code, the parallel stack view
 Generates reasonable amount of data
 Uses adaptive sampling rates + on-cluster merge technology

o Controls the amount of data recorded – critical for large core counts

 All metrics turned on, all the time (5% wall-clock stated overhead – not tested at DSRC yet)
 GUI display

o Shows memory usage, floating-point calculations and MPI usage at a glance
o CPU view shows the percentage of vectorized SIMD instructions, including AVX extensions used

in each part of the code
o Shows how the amount of time spent in memory operations varies over time and processes
o cache use efficiency
o Uses can zoom timeline, isolate a single iteration and explore its behavior in detail
o Everything shows aggregated data, shows distributions with outlying ranks labelled

2.5.2 HPC Toolkit (Rice University)

2.5.2.1 Features

 An integrated suite of tools for measurement and analysis of program performance

 Serial, threaded (pthreads/OpenMP), MPI, and hybrid (MPI+threads) parallel codes

 Works on computers ranging from multicore desktop systems to the largest supercomputers.

 Uses statistical sampling of timers and hardware performance counters,

 Collects accurate measurements of a program's work, resource consumption, and inefficiency

 Attributes them to the full calling context in which they occur.

 Works with multi-language, fully optimized applications

 Executables can be statically or dynamically linked.

 Uses sampling, measurement has low overhead (1-5%),

 Scales to large parallel systems.

 presentation tools enable (both within and across nodes of a parallel system)

o rapid analysis of a program's execution costs,
o inefficiency
o scaling characteristics

2.5.3 Vampir-trace/scoreP/Vampir (TU Dresden)

2.5.3.1 Features

 Automatic function instrumentation:
o Using specifics of the underlying compiler
o Using tools like TAU and Dyninst

 Links instrumentation libraries
o MPI
o POSIX Threads
o libc: I/O, memory, and other system calls
o CUDA, CUPTI

 Instruments OpenMP statements (using Opari)
 Launches application with an appropriate test-set

 Measurement library performs:
o Event data collection
o Triggered by function calls
o Records selected performance metrics
o Precise time measurement
o Parallel timer synchronization
o Filtering and grouping of function calls
o Monitor accelerator

 Measurement is controlled via environment variables

 Event records stored in internal buffer
o Written to file at the very end

 Improved OPARI2 instrumentation for OpenMP

2.5.4 mpiP (LLNL)

2.5.4.1 Features

 mpiP is a lightweight profiling library for MPI applications

 collects statistical information about MPI functions

 low overhead

 generates much less data than tracing tools

 All the information captured by mpiP is task-local

 uses communication during report generation, to merge results from all of the tasks into one output file.

 tested on a variety of C/C++/Fortran applications from 2 to 262144 process

 tested on a 262144-process run on the LLNL Sequoia BG/Q system

2.6 Comparison of Strengths

Tool Strength AVUS HYCOM GAMESS

 Evaluated / Working?

Open Speedshop MPI, HW counters,Sampling,
Comparison

Yes Yes Yes

Cray PAT MPI, Binary instrumentation
Feedback/Insight

Yes Yes Yes

TAU MPI, HW Counters, Threads, Sampling,
Source/Binary Instrumentation

Yes Yes Yes

MAP MPI/FP/vecorization/memory, No PAPI
support

 Yes Yes

VAMPIR/scoreP Communication Matrix Yes

mpiP (LLNL/CASC) Lightweight MPI Yes Yes Yes

HPC Toolkit MPI, Threads, Scalability

3 Description of Codes Used

3.1 AVUS
AVUS is an acronym for Air Vehicles Unstructured Flow Solver, formerly known as COBALT60.
AVUS is a software package to provide unstructured grid solution of unsteady, ideal gas, euler/navier-stokes
equations. The software used in our project is software version dated: 25 AUGUST 2010.

3.2 HYCOM
HYCOM, from hycom.org, stands for HYBRID COORDINATE OCEAN MODEL.

Traditional vertical coordinate choices [z-level, terrain-following (sigma), isopycnic] are not by themselves optimal

everywhere in the ocean. Ideally, an ocean general circulation model (OGCM) should (a) retain its water mass

characteristics for centuries (a characteristic of isopycnic coordinates), (b) have high vertical resolution in the

surface mixed layer (a characteristic of z-level coordinates) for proper representation of thermodynamical and

biochemical processes, (c) maintain sufficient vertical resolution in unstratified or weakly-stratified regions of the

ocean, and (d) have high vertical resolution in coastal regions (a characteristic of terrain-following coordinates).

The hybrid coordinate is one that is isopycnal in the open, stratified ocean, but smoothly reverts to a terrain-
following coordinate in shallow coastal regions, and to z-level coordinates in the mixed layer and/or unstratified
seas.

3.3 GAMESS
GAMESS, which is an acronym for The General Atomic and Molecular Electronic Structure System, is a
general ab initio quantum chemistry package (http://www.msg.ameslab.gov/gamess/index.html).
Briefly, GAMESS can compute SCF wavefunctions ranging from RHF, ROHF, UHF, GVB, and MCSCF.
Correlation corrections to these SCF wavefunctions include Configuration Interaction, second order
perturbation Theory, and Coupled-Cluster approaches, as well as the Density Functional Theory
approximation. Excited states can be computed by CI, EOM, or TD-DFT procedures. Nuclear gradients
are available, for automatic geometry optimization, transition state searches, or reaction path following.
Computation of the energy hessian permits prediction of vibrational frequencies, with IR or Raman
intensities. Solvent effects may be modeled by the discrete Effective Fragment potentials, or continuum
models such as the Polarizable Continuum Model. Numerous relativistic computations are available,
including infinite order two component scalar corrections, with various spin-orbit coupling options. The
Fragment Molecular Orbital method permits use of many of these sophisticated treatments to be used
on very large systems, by dividing the computation into small fragments.

4 Description of Supercomputing Platforms Used for the Study

4.1 Cray XE6 AMD Opteron 6300 (Interlagos) 2.5 GHz @ ERDC

4.1.1 System Location

ERDC DSRC – garnet.erdc.hpc.mil

4.1.2 Node Description

Cray XE6 Node Configuration

Login Nodes Compute Nodes

Total Cores | Nodes 128 | 8 150912 | 4716

Operating System SLES 11 Cray Linux Environment

Cores/Node 16 32

Core Type AMD 64-bit Opteron AMD Interlagos Opteron

Core Speed 2.7 GHz 2.5 GHz

Memory/Node 128 GBytes 64 GBytes

Accessible Memory/Node 8 GBytes 60 GBytes

Memory Model Shared on node. Shared on node. Distributed across cluster.

Interconnect Type Ethernet Cray Gemini

4.2 SGI ICE X Intel Xeon E5 2670 0 (Sandybridge) 2.6 GHz @ AFRL

4.2.1 System location

AFRL DSRC - spirit.afrl.hpc.mil

4.2.2 Node Description

4.3 CRAY XC30 Intel Xeon E5 2697 (Ivybridge) 2.7 GHz @ NAVO

4.3.1 System location

NAVY DSRC - armstrong|shepherd.navo.hpc.mil

4.3.2 Node Description

SGI ICE X Node Configuration

Login Nodes Compute Nodes

Total Cores | Nodes 128 | 8 73440 | 4590

Operating System RHEL 6

Cores/Node 16

Core Type Intel Xeon Sandy Bridge

Core Speed 2.6 GHz

Memory/Node 64 GBytes 32 GBytes

Accessible Memory/Node 62 GBytes 30 GBytes

Memory Model Shared on node. Shared on node. Distributed across cluster.

Interconnect Type FDR 14x Infiniband FDR 14x Infiniband;Enhanced LX Hypercube

Cray XC30 Node Configuration

Login Nodes Compute Nodes

Total Cores | Nodes 288 | 12 56880 | 2370

Operating System SUSE Linux Cray Linux Environment

Cores/Node 24

Core Type Intel Xeon E5-2697v2 Intel Xeon E5-2697v2

Core Speed 2.7 GHz

Memory/Node 256 GBytes 64 GBytes

Accessible
Memory/Node

240 GBytes 63 GBytes

5 Building Executables for Profiling

5.1 General Considerations

5.1.1 Static vs. Dynamic Executables

Linux Library Types:
There are two Linux C/C++ library types which can be created:

 Static libraries (e.g libmpich.a):
o Library of object code which is linked with, and becomes part of the application.

 Increases the size of the executable
 when a library needs to be updated you'll need to compile the new library and then

recompile the application to take advantage of the new library.

 Dynamically linked shared object libraries (e.g. libmpich.so):
There is only one form of this library but it can be used in two ways.
o Dynamically linked at run time but statically aware. The libraries must be available during

compile/link phase. The shared objects are not included into the executable component but are tied
to the execution. Some advantages are

 Underlying dynamic library could be updated but the executable does not have to be linked
 Executable footprint is smaller

o Dynamically loaded/unloaded and linked during execution (i.e. browser plug-in) using the dynamic
linking loader system functions – probably not a concern for users’ apps.

 Example from ERDC DSRC
[kghosh@garnet07:/opt/cray/mpt/6.3.0/gni/mpich2-cray/81/lib]$ ll libmpich\.*
lrwxrwxrwx 1 bin bin 15 May 21 19:02 libmpich.a -> libmpich_cray.a
lrwxrwxrwx 1 bin bin 16 May 21 19:02 libmpich.so -> libmpich_cray.so

Cray ftn
-h shared Creates a library which may be dynamically linked at runtime.
 Please use ftn -shared with the generic ftn command on Cray systems
-h static Linker uses the static version of the libraries, not the dynamic version of the
 libraries, to create an executable file.
 Please use ftn -static with the generic ftn command on Cray systems
-h dynamic Compiler driver links dynamic libraries at runtime to create a
 dynamically linked executable files and may
 Do not use with the -h static or -h shared options.
 Please use ftn -dynamic with the generic ftn command on Cray systems

OSS
When shared library support is limited the normal manner of running experiments
in Open|SpeedShop doesn't work. You must link the collectors into the static executable.
Currently Open|SpeedShop has static support on Cray and the Blue Gene P/Q platforms.
You must relink the application with the osslink command to add support for the collectors.
The osslink command is a script that will help with linking.

Memory Model Shared on node. Shared on node. Distributed across cluster.

Interconnect Type Ethernet Cray Aries

Calls to it are usually embedded inside an application's makefiles.

The user generally needs to find the target that creates the actual static executable and create a collector target
that links in the selected collector. The following is an example for re-linking the smg2000 application.

smg2000_pcsamp.x: ${OBJS}
@echo "Linking" $@ "... "
osslink -v -c pcsamp ${CC} -o smg2000_pcsamp.x ${OBJS} ${LFLAGS}
There are similar commands for linking an executable for use with experiments pertaining to hwcsamp, usertime

5.1.2 Instrumentation of User Code
Most tools use some form of instrumentation that could be performed during compilation of the code. The

compiler inserts hooks that are used at runtime to call tool-specific functions that perform data collection based

on users’ requests or the tools default data collection policy.

An example would be from TAU inserting function calls such as
 5ca288: e8 73 73 fd ff callq 5a1600 <Tau_lite_start_timer>
 5ca2a2: e8 79 7a fd ff callq 5a1d20 <Tau_lite_stop_timer>

Tools can also take an executable and inject data collection probes (e.g. Cray’s pat_build, see description
of use of pat_build in Section x.y.z.w). One might see evidence of injecting start/stop functions in the
instrumented executable:
 4530d4: e8 70 49 fe ff callq 437a49 <__pat_hwpc_start>
 45314d: e8 64 4d fe ff callq 437eb6 <__pat_hwpc_stop>

(FYI, the utility “objdump –s –D a.out_instrumented” was used to look for these hooks.)
In addition to compiler instrumentation, instrumentation of the executable by a stand alone tool like
pat_build, a user can MANUALLY inject start/stop statements using the tool vendor specific API. E.g.
ToolX_START (“My_instrumented_region”);
ToolX_STOP (“My_Instrumentated_region”);
This aforementioned “source instrumentation” mechanism will require recompilation and relinking. The
tool will treat the block of code fenced within START and STOP using the user-chose symbolic name
“My_instrumented _code”. One can add as many of these as one needs to refine data collection with a
function of importance.

5.1.3 Dyninst API

The Paradyn project (UofWisconsin/UofMaryland) develops technology that aids tool and application developers in

their pursuit of high-performance, scalable, parallel and distributed software. The primary project, Paradyn,

leverages a technique called dynamic instrumentation to efficiently obtain performance profiles of unmodified

executables. This dynamic binary instrumentation technology is independently available to researchers and

developers via the Dyninst API. Many tools use this technology to aid them in their data collection.

5.1.4 Modules and Dotkits

On DSRC systems users have a wide variety of choices for Programming Environments. The loaded modules have

to be compatible with the tools’ expectations. Most of the time the default versions will work in unison but when it

doess not the tools will try to point to the incompatibility and a solution. Of course CCAC is always a good place to

contact if there is an issue.

5.1.5 Compiler versions

The default compilers selected by DSRC’s system staff are a good place start. But in case there are unexpected
errors, users should be prepared to move to a newer or older of the version. For testing purposes it might also
make sense to try a compiler from a different vendor, e.g. choosing between Intel, PGI, Cray or GNU compilers. For
a large code, switching compilers is not an easy chore as the newly chosen compiler might be less forgiving than
the previous one.

5.1.6 MPI Implementation and Compatibility Issues

Most Cray systems will have cray-mpich/6.3.0 installed. This is fine. Your systems (Cray XC30) might have cray-

mpich/7.0.0 (based on MPT 7.0.0) available. The advantages of switching to the cray-mpich/7.0.0 are being

investigated. Use of module cray-mpich/5.6.x or cray-mpich2 is not recommended.

5.1.7 Wrappers and scripts for compilation and linking

We are all familiar with the use of wrappers/scripts in one form or another. They export necessary environment
variables, hide details of a sequence of steps and prevent errors from occurring from accidental misuse once the
wrappers have been tested thoroughly. MPI wrappers such as mpif90, mpicc, mpicxx etc. can encapsulate details
related to include directories, libraries needed, etc. to build executables.
Tools will often use wrappers too, in addition to loading a module.
Some examples follow.
TAU uses compiler wrappers such as tau_f90.sh, tau_cc.sh and tau_cxx.sh to correctly setup the compiling and
linking command it needs to do its job.
Cray PAT uses a wrapper called pat_build to instrument an executable.
OSS needs a script called osslink to build a static executable.

5.2 OSS Build Procedures
Nothing special is required for building an executable for use with OSS. Compile and link the code with
the optimization flags normally used for the app. If a static executable is built then the discussion in
Section 5.1.1 is relevant:
smg2000_pcsamp.x: ${OBJS}
osslink -v -c pcsamp ${CC} -o smg2000_pcsamp.x ${OBJS} ${LFLAGS}
There are similar commands for linking an executable for use with experiments pertaining to hwcsamp, usertime

5.3 PAT Build Procedures
 pat_build (stand-alone utility) that instruments applications for performance collection

 Requires no source code or makefile modification
o Automatic instrumentation at group (function) level
o Groups: mpi, io, heap, math SW, …

 Performs link-time instrumentation
o Requires object files
o Instruments optimized code
o Generates stand-alone instrumented program
o Preserves original binary

 Create an instrumented executable easily using Automatic Program Analysis
module load perftools # Access performance tools SW

 make clean
 make # Build application, use –h keepfiles to keep intermediate files

pat_build -O apa hycom # will create instrumented executable hycom+pat

5.3.1 The .apa File

Here is atypical .apa file that can be modified and used to recreate a binary that suits better the users data
collection need.
The variable PAT_RT_PERFCTR can be reset via the option:
-Drtenv=PAT_RT_PERFCTR=default|something_else

You can edit this file, if desired, and use it
to reinstrument the program for tracing like this:
pat_build -O report3.apa
These suggested trace options are based on data from:
gamess.00.x+pat+23702555-175s.ap2
Collect the default HWPC group.
-Drtenv=PAT_RT_PERFCTR=default
Libraries to trace.
 -g mpi
User-defined functions to trace, sorted by % of samples.
 -u # Enable tracing of user-defined functions.
29.51% 1451 bytes
 -T dirfck_rhf_
4.07% 16554 bytes
 -T shellquart_
3.91% 39365 bytes
-o gamess.00.x+apa # New instrumented program.

5.3.2 Keeping Intermediate Files

With Cray compilers (CCE) use –h keepfiles.
With Intel compilers (icc/ifort) use –save-temp
With PGI compilers (pgcc/pgf90) use –Mnoipa=keepobj (This should be the default, but check).

5.3.3 Building codes to reduce volume of data collected

5.3.3.1 In the .apa file specify which functions to trace.

 -T forms_
2.93% 3637 bytes
 -T dftfock_
2.54% 910 bytes
 -T zqout_

2.17% 9419 bytes
 -T genr70_
2.14% 24939 bytes
 -T genral_

5.3.3.2 Prune using filters

The way traced functions are filtered can be controlled with
pat_report options (values used for this file are shown):

-s apa_max_count=200 No more than 200 functions are listed.
-s apa_min_size=800 Commented out if text size < 800 bytes.
-s apa_min_pct=1 Commented out if it had < 1% of samples.
-s apa_max_cum_pct=90 Commented out after cumulative 90%.

5.4 TAU Build Procedures

5.4.1 Choosing the right Makefile

For TAU there is an important directory on the DSRCs:
ERDC DSRC: $PET_HOME/pkgs/tau/craycnl/lib
Look for tau Makefiles with names like Makefile.tau-cray-papi-mpi-pdt.
export TAU_MAKEFILE=$PET_HOME/pkgs/tau/craycnl/lib/Makefile.tau-cray-papi-mpi-pdt

AFRL DSRC: $PET_HOME/pkgs/tau/x86_64/lib
export TAU_MAKEFILE=export TAU_MAKEFILE=$TAU/Makefile.tau-intel1301_mpt208-icpc-papi-ompt-mpi-pdt-openmp

NAVY DSRC:

5.4.2 Rules for AVUS

In the Makefile some changes had to be made:

> FORTRAN="tau_f90.sh"
> FORTRAN_NO_TAU="ftn"
> export TAU_OPTIONS='-optPdtF95Opts="-R free" -optVerbose'
> CC="tau_cc.sh"
And,
> FFLAGS="-G2 -h keepfiles -O2 -h noomp -f free"
> FFLAGS2="-G2 -h keepfiles -O2 -h noomp -f free"
> CFLAGS="-G2 -h keepfiles -O2 -h noomp -DLOWER_UNDERSCORE"

5.4.3 Rules for GAMESS

For building GAMESS with TAU, the install.info file generated by the use should be modified to look as
follows, with the major change highlighted:
#!/bin/csh
compilation configuration for GAMESS
generated on garnet08
generated at Sat Dec 28 14:07:15 CST 2013
setenv GMS_PATH /lustre/work1/kghosh/ABTP/app/gamess
setenv GMS_BUILD_DIR /lustre/work1/kghosh/ABTP/app/gamess
machine type
setenv GMS_TARGET cray-xt
FORTRAN compiler setup
#setenv GMS_FORTRAN ftn
setenv GMS_FORTRAN tau_f90.sh
mathematical library setup
setenv GMS_MATHLIB acml
parallel message passing model setup
setenv GMS_DDI_COMM mpi
setenv GMS_MPI_LIB CrayXT
LIBCCHEM CPU/GPU code interface
setenv GMS_LIBCCHEM false

5.4.4 Rules for HYCOM

export TAU_OPTIONS='-optPdtF95Opts="-R free" -optVerbose'

See section 5.4.4.1 below for some additional options that might be needed.
Some F90 module files (mod_dimensions mod_xc mod_za mod_pipe mod_incupd mod_floats
mod_tides mod_mean mod_hycom) caused problems for the wrappers and had to be compiled with the
native compiler. e.g.
mod_tides.o: mod_tides.F mod_xc.o common_blocks.h mod_za.o
 $(CPP) $(CPPFLAGS) $< | sed -e '/^ *$$/d' > $<.f
 $(FC) $(FCFFLAGS) -c $<.f
 mv mod_tides.F.o mod_tides.o

5.4.5 Keeping (Intermediate) Files for use during post-processing

With the tau compiler wrappers such as tau_cc.sh, tau_cxx.sh or tau_f90.sh users have to use the compile time

option –optKeepFiles (or set the variable TAUOPTIONS=”optKeepFiles –oprVerbose”)

5.4.6 Building codes to reduce volume of profile data

5.4.6.1 Include list and exclude list for function

A very easy way to prune the amount of data collected is to build executables where some selected functions are
traced. A file named “tau_select_functions_list” could contain
BEGIN_INCLUDE_LIST
GENR03
GENRAL
FORMS
DMATD
MCDAV
R30S1D
GAMESS
END_INCLUDE_LIST
And then a compiler option could be used as follows:
tau_cc.sh –optTauSelectFile=”tau_select_functions_list”
or export TAU_OPTIONS=’ –optTauSelectFile=”tau_select_functions_list” ‘

Other examples of commands to put in an include/exclude file are:

#Tell tau to not profile these functions
BEGIN_EXCLUDE_LIST
void quicksort(int *, int, int)
The next line excludes all functions beginning with "sort_" and having arguments "int *"
void sort_#(int *)
void interchange(int *, int *)
END_EXCLUDE_LIST

#Exclude these files from profiling
BEGIN_FILE_EXCLUDE_LIST
*.so
END_FILE_EXCLUDE_LIST

BEGIN_INSTRUMENT_SECTION
A dynamic phase will break up the profile into phase where
each event is recorded according to the phase of the application
dynamic phase name="foo1_bar" file="foo.c" line=26 to line=27

instrument all the outer loops in this routine
loops file="loop_test.cpp" routine="multiply"

tracks memory allocations/deallocations as well as potential leaks
memory file="foo.f90" routine="INIT"

tracks the size of read, write and print statements in this routine
io file="foo.f90" routine="RINB"
END_INSTRUMENT_SECTION

Selective instrumentation files can be created automatically from ParaProf by right clicking on a trial and selecting
the Create Selective Instrumentation File menu item

6 Executing Codes to Collect Performance Data

6.1 OSS

6.1.1 Example script for submitting a batch job

#!/bin/bash
#PBS -q standard
#PBS -l select=43:ncpus=32:mpiprocs=32
#PBS -l walltime=04:00:00
#PBS -j oe
#PBS -V
#PBS -N hy_oss_1353
#PBS -A YourAccountNumber

export DYNINSTAPI_RT=1
export OPENSS_RAWDATA_DIR=$WORKDIR/scratch/oss/hycom_hi
rm -rf $OPENSS_RAWDATA_DIR
mkdir -p $OPENSS_RAWDATA_DIR

source ${MODULESHOME}/init/ksh
module unload PrgEnv-pgi
module load PrgEnv-cray

This step is very important or else Cray PAT libs could interfere with OSS’s ability to collect data and
you might not have a performance database at the end.

module unload perftools
module load /u/galarowi/privatemodules/openss

Set up you app’s environment input file etc. as you normally do

export THIS=…
export THAT=…

Excute HYCOM
Example 1. Run a PCSAMP experiment

osspcsamp "aprun -n 1353 -N 32 hycom.x"

or Example 2. Run a HWCSAMP experiment

osshwcsamp "aprun -n 1353 -N 32 " PAPI_TOT_CYC,PAPI_FP_OPS,PAPI_DP_INS

Similarly, for AVUS change the AVUS command line in the job script from
EXE=/lustre/work1/kghosh/avus/bin/avus.xt.dp
aprun -n 512 -N 16 $EXE "
to
osshwcsamp "aprun -n 512 -N 16 $EXE " PAPI_TOT_CYC,PAPI_DP_OPS,PAPI_FP_INS

6.1.2 Env Vars (experiment name is the middle part of the name of the variable)

6.1.3 Expected Output Files

If your executable is called hycom.x, OSS will create a performance database named hycom.x-pcsamp.openss, if
pcsamp is the OSS experiment that was used. Other typical experiments are usertime, hwcsamp, hwc etc. If you re-
run the pcsamp experiment, the next database will be named hycom.x-pcsamp-1.openss. the original database will
not be overwritten.

6.1.4 Do’s and don’t’s

Using a shared filesystem is essential.
When you submit a job to be profiled by OSS it is important to use a shared file system accessed
from all nodes/ranks as follows:
export OPENSS_RAWDATA_DIR=/lustre/work1/kghosh/myopenss/mxm
rm -rf $OPENSS_RAWDATA_DIR
mkdir -p $OPENSS_RAWDATA_DIR

What if OSS numbers from HWCSAMP experiment does not match TAU or PAT?

Should you adjust the sampling rate? You could bump up the sampling rate from 100 (the default
for pcsamp) to something higher, say 200 or more just as a sanity check but be aware that a
higher sampling rate will lead to higher overhead and hence the numbers will be skewed. After
the sanity check is done you could revert back to the default sampling rate.

6.2 PAT

6.2.1 Example batch script

#!/bin/ksh

submit job to execute hycom.01001.pt613_reinst+apa

#PBS -q standard
#PBS -l select=43:ncpus=32:mpiprocs=32
#PBS -l walltime=04:00:00
#PBS -j oe
#PBS -N hy_1001_pat
#PBS -A HPCMO34140200
source ${MODULESHOME}/init/ksh
module unload PrgEnv-pgi
module load PrgEnv-cray
module load perftools/6.1.3

module load craype-hugepages2M # Optional

Note that an instrumented binary built with pat_build must be used

EXE=hycom_1000.x.pat
aprun –n 1001 –N 32 $EXE # aprun command line remains unchanged.

6.2.2 Env vars

Cray PAT has many environment variables that the user could specify. Some that the user could find useful are as

follows.

6.2.3 Expected Output files

All initial data files are output in .xf format, with a generated file name consisting of
your original program name, plus pat, plus the execution process ID number, plus
the execution node number. Depending on the program run and the types of data
collected, CrayPat output may consist of either a single .xf data file or a directory
containing multiple .xf data files.
An example would be the directory hycom.01353_reinst+pat+24855249-1759t.
In this case the 1353 rank job has created 37 files with names like 0000NM.xf

Number of files used to store raw data

1 file created for program with 1 – 256 processes
√n files created for program with 257 – n processes
able to customize with PAT_RT_EXPFILE_MAX

6.2.4 Do’s and don’ts

What to do with large number of PEs?
You can choose the rank you would like to report.
pat_report –o my_avus_000_report.txt -s=’pe[000]’ avus.xt.dp.instr.x+24856867-4581t

What to do when missing profile for expected functions?

Use pat_build to instrument your binary you can specify the name of the function with the –T
option.
The command
pat_build -u -gmpi –T archiv_,barotp_,bigrid_,blkdat_,cnuity_,convec_,diapfl_ hycom.01001.pio
will instrument just the functions in the comma-separated list above.
The name of the executable is hycom.01001.pio and the re-built, instrumented binary will be
hycom.01001.pio+pat

6.3 TAU

6.3.1 Example batch script for TAU

#!/bin/bash
#PBS -q background
#PBS -l select=43:ncpus=32:mpiprocs=32
#PBS -l walltime=03:00:00
#PBS -j oe
#PBS -V
#PBS -N hy_1353_tau
#PBS -A HPCMO34140200

source ${MODULESHOME}/init/ksh
module unload PrgEnv-pgi
module load PrgEnv-cray
module unload perftools
#module load papi/5.2.0

export LD_LIBRARY_PATH=/opt/cray/papi/5.1.1/perf_events/no-cuda/lib:$LD_LIBRARY_PATH
export TAU_METRICS=TIME,PAPI_DP_OPS,PAPI_TOT_CYC,PAPI_TOT_INS
export TAU_SAMPLING=0
export TAU_VERBOSE=1
EXE=hycom.01353.tau
aprun -n 1353 -N 32 ./$EXE

6.3.2 Expected Output Files

TAU will generate multiple output files with performance data, one for each rank. For example, the files
will be numbered profile.0.0.0 .. profile.511.0.0 if 512 ranks are used.
If, as in the job script above, TAU_METRICS is set to TIME,PAPI_DP_OPS,PAPI_TOT_CYC,PAPI_TOT_INS,
There will be additional directories named MULTI__TIME, MULTI__PAPI_DP_OPS etc., each of which will
have profiles files numbered profile.0.0.0, profile.1.0.0 .. profile.1352.0.0.

6.3.3 Do’s and Don’ts

Use export TAU_SAMPLING=0/1 with care.
Use export TAU_THROTTLE=0/1 with care.

6.4 Code specific Suggestions

6.4.1 AVUS

6.4.2 GAMESS

6.4.3 HYCOM

6.5 Reducing Volume of Performance Data

6.5.1 MPI only

Sometimes an MPI profile is a good place to start if the executable is communication bound and there is

a significant MPI activity. The MPI-only profile will also rule out if there are huge load balance issues at

barriers.

6.5.2 Control Sampling Rate

There is often a direct relationship between the sampling rate and the overhead, as well as the volume

of data collected and visualized. Most tools have suitably chosen defaults. You are welcome to modify

the sampling rate to a higher or lower value for sanity checks and experimentation, but for running a

large code with many ranks, many functions, and functions called a millions of times, it will be necessary

to choose the right sampling rate.

6.5.3 Control HWC threshold

6.5.4 Filters to ignore frequently called small functions

6.5.5 Throttle etc.

For PAT, export PAT_RT_SUMMARY=0 collects data in details.

Switching off data summarization will record detailed data with timestamps, large raw data files and

significantly increased overhead.

For TAU a throttle feature (set by TAU_THROTTLE) can stop recording a function after it had been

called a significant number of times.

6.6 Reducing Data Collection Overhead

6.7 Techniques For Faster I/O
Always use a parallel file system when the code is executed or the tool is running and writing to

performance databases.

7 Post-processing/Visualization opportunities and utilities

7.1 Cray PAT
Recall that you had built your instrumented binary (see section ….) using
pat_build –O apa –o hycom_pat hycom
and then executed hycom as follows 9as an example):
aprun –n 1001 hycom_pat

This produces the data file my_program+pat+PID-nodet.xf, which contains basic asynchronously derived
program profiling data.

pat_report is next used to process the data file.
pat_report hycom_pat+PID-nodet.xf # output to stdout
pat_report –o hycom_pat_report.txt hycom_pat+PID-nodet.xf # output to file hycom_pat-report.txt

There are three outcomes:
1. a sampling-based text report to stdout or to a report file
2. an .ap2 file, hycom_pat+PID-nodet.ap2, which contains both the report data and the associated

mapping from addresses to functions and source line numbers, to be viewed with the powerful
view tool ap2:
app2 hycom_pat-PID-nodet.xf

3. an .apa file, hycom_pat+PID-nodet.apa, which contains the pat_build arguments recommended
for further performance analysis, to be used as follows:
pat_build –O hycom_pat+PID-nodet.apa
The .apa file would information about the binary to be re-instrumented.

7.2 OSS
Recall that use of OSS does not require recompilation or relinking. During job launch one has to use

helper scripts like osspcsamp, ossuertime or osshwcsamp. Here is a summary of some of the features of

post-processing using OSS:

 Launch 512 core AVUS job on GARNET

 module load ~galarowi/privatemodules/openssu4

 osspcsamp “aprun –n 1001 avus”
 Collect data from Hardware Performance Counters using osshwcsamp

 Display performance data

 module load ~galarowi/privatemodules/openssu4

 openss avus-pcsamp.openss

 Primary display will look like this:

 Click on function name for Annotated source display – here we have picked L3 missies as the

metric of choice

L3 Misses Line#

 47 do NS=1,NUMFPC(NC)

34865687 48 NB = NABR(NC,NS)

1339704767 49 DOTPROD(2) = AMAT(6,NS,NC)*RESID(1,NB,2) +
 AMAT(7,NS,NC)*RESID(2,NB,2) + etc.

389097041 50 FRHS(2) = FRHS(2) - DOTPROD(2)

 51 enddo

 Use sorting capability for displaying data (by metrics, function name etc.)

 Experiment comparison allows what-if analysis – use “osscompare”

7.3 TAU
Use paraprof to postprocess TAU profile data.

If PAPI is used to collect Hardware Counter data, there will be directories with names like

MULTI__PAPI_FP_OPS reflecting the PAPI preset or native counter chosen.

The paraprof viz tool should be used in the that directory. If we run a 1001-rank job, there will be 1001

files with names like profile.N.0.0, one for each rank. There could be more files if thread data is

collected.

It is not necessary to view all the data which is what the bare paraprof command will do. To narrow it

down, we could use

pararprof profile.0.0.0

to view rank 0 for instance.

The GUI is quite powerful, with hundreds of option which become easier to use after every attempt.

Source code can displayed quite easily and intuitively. Images can be saved in jpeg format for use in

presentations.

There is also a command line tool called pprof that produces searchable ASCII file often useful for

processing a large volume of data. Pprof has all sorts of filters to narrow down the amount of data

processed and displayed on stdout.

Below we show an image of the main display from paraprof showing the PAPI_FP_OPS count for

compute intensive functions.

7.4 Dealing with Large Amounts of Profile Data

7.4.1 Select Rank

Most tools have a way to process selected ranks. You can prune the data and still obtain valuable

information.

 PAT: Examples

pat_report –s filter_input=’pe==0’ –o my_report.txt gamess.x+apa+24-185t # PE# 0
pat_report –s filter_input=’pe%2==0’ –o my_report.txt gamess.x+apa+24-185t # EVEN PEs
pat_report –s filter_input=’pe%2==1’ –o my_report.txt gamess.x+apa+24-185t # ODD PEs
pat_report –s filter_input=’pe<1024’ –o my_report.txt gamess.x+apa+24-185t #only 1024 Pes

 OSS: Examples

openss –cli a.out-pcsamp.openss # command line interface will provide a prompt

 expview –r 0 # show me data for rank 0 only

 TAU: Examples

TAU allows you to display all the data on the GUI and then select a certain rank (called a node in TAU

parlance).

Or one could use the command line report-generator, pprof as follows

pprof profile.511.0.0 # show me data for rank 511

or

cd MULTI__PAPI_DP_OPS

pprof profile.511.0.0 # show me PAPI_DP_OPS data for rank 511

7.4.2 Select Performance Metric

OSS will allow users to choose a metric or a few metrics:

openss –cli a.out-pcsamp.openss # command line interface will provide a prompt

 Expsstatus # let us see what you have stored in the database

 expview –m PAPI_DP_OPS –r N # show me data for PAPI_DP_OPS for rankN

7.4.3 Using CLI (command line interface)

8 General Strategy for Analysis of Tools
We had started the ambitious project of evaluating tools and had decided to carry on a tool-inter-
comparison, looking for high quality information from all tools, making sure that tools agreed with one
another. To make progress towards those goals, it was thought that we should proceed with small steps
instead of one giant leap, applying a divide-and-conquer policy.
The stages that were pursued for building confidence as well as conducting sanity checks are as follows:
1. Simple kernels with known OpCount such as STREAM for calibration and sanity check
2. Mini App from LLNL e.g. UMT2013 which is complex enough but is manageably small
3. Application test-suite such as GAMESS exam01-47.inp test cases offering a wide spectrum
4. DoD relevant test-suite such as TI-14. This is the final step, using three large simulation codes,

AVUS, GAMESS and HYCOM. Multiple platforms were used. TI-14 class problems were executed
using high core counts (~1000).

9 Measured Results
Experiments that were/are conducted fall under these categories:

1. Compare HW counter data collected using PAPI on GARNET at ERDC. Although data was collected for AVUS,

GAMESS and HYCOM, only HYCOM data is presented here.

2. Using AVUS as the application and using a TI-14 class test case, profile data on two platforms,

a. AFRL DSRC’s SPIRIT system (SGI ICE X with Intel Xeon Sandybridge @ 2.6 GHz) and

b. ERDC DSRC’s GARNET system (CRAY XE6 with AMD Opteron Interlagos @ 2.7 GHz)

c. Compare data collected by the tools for match/mismatch

3. Compare data collected on Intel Xeon Sandybridge (AFRL’s SPIRIT SGI ICE X) with that on Intel Xeon Ivybridge

(NAVO’s Cray XC30) – work in progress

9.1 HYCOM on GARNET (Cray XE6 w/ AMD Interlagos) Double Precision

Operations using PAPI_FP_OPS
Experiment: Do the tools agree with one another?
Observation: Yes, hardware counter data (PAPI_FP_OPS) seem to match, more or less!

HYCOM Function PAT OSS TAU

momtum_ 13.4G 12.8 G 12.8 G

mxkprfbij 411 M 319 M 391 M

advem_fct2 2.53 G 2.85 G 2.5 G

barotp 1.08 G 1.15 G

9.2 AVUS Platform Inter-comparison Experiment (SGI ICE X w/ Sandybridge

vs. Cray XE6 w/ Interlagos) Measuring PAPI_DP_OPS

AVUS HW
Counter
(PAPI_DP_OPS)

Open Speedshop TAU

Function SPIRIT SGI ICE X
Intel
Sandybridge

GARNET
CrayXE6
AMD Interlagos

SPIRIT SGI ICE X
Intel
Sandybridge

GARNET Cray
XE6
AMD Interlagos

walldst_ 3575 G 3126 G 3133 G 3129 G

karl6sc 1.30 G 1.098 G 1.51 G 1.125 G

ucm6_ .470 G .455 G 0.597 G 0.523 G

10 Which Tools To Use?
 A first-time user does not care if the tools uses sampling or tracing or binary instrumentation.

They do care about these features:
o No special re-compilation
o No special re-linking
o No tricky instrumentation
o Fast ramp-up time - use their batch scripts without adding too many complications
o Easily launch their jobs and collect performance data
o Gather, without gymnastics, basic performance information about time spent in

 MPI

 Compute-intensive functions
 Statements
 Loops
 I/O

o Easy to use GUI for post-processing / viewing of collected data
o Insight – how can this code be sped up?

 More advanced users care about ease of use too but have more flexibility and needs:
o Re-compilation, re-linking, instrumentation acceptable if tool provides useful details

about
 Functions, loops, statements, libraries
 Annotated source code
 Parallel regions, OpenMP, GPU etc
 Events timeline
 Insight
 Feedback to tool and iterative tuning

o Caller-callee relationship/trees
o Good scaling with large core counts
o Choice of remote / local post-processing
o Hardware Performance Counters for exposing bottlenecks
o Support and installation
o Sampling + tracing in a single framework
o Transparent instrumentation (pre-loading and binary)
o Insight – bottlenecks? BW, latency, TLB miss, stalls? how can this code be sped up?

 Insight is currently the hardest job for a tool.

11 Future Work
 Threads: Study OpenMP performance using TAU/PAT or (scoreP , HPCToolkit)

 Vectorization: analyze using native HW counters
 Measuring Mem BW for Intel processors

o Known tough problem for Intel processor
o BW easily measured for IBM BG/Q or Opterons

 What about memory latency and latency hiding information
o New memory tools (LLNL/CASC? Google gooda?)

 Using newer technologies
o Integration of new features into the OS to be used by new tools
o PEBS, RAPL, LLNL’s Dr. Roundtree and his power measurement tools

 Predict GPU suitability of codes using performance counter data?

12 Acknowledgements
 DoD HPCMP

o Dr. Roy Campbell
o Dr. William Ward

 ERDC CS&E HPC Performance Specialists
o Dr. Tom Oppe
o Laura Brown
o Carrie Leach

 Tool Developers
o Sameer Shende (Paratools/University of Oregon)
o Jim Galarowicz, Don Maghrak (Krell Institute)
o Heidi Poxon (Cray Inc.)

13 Documentation

13.1 Cray PAT
Using Cray Performance Measurement and Analysis Tools, http://docs.cray.com/books/S-2376-60, or

http://docs.cray.com/books/S-2376-60//S-2376-60.pdf , Dated Sep 2012. Explains how to use CrayPat, Cray

Apprentice2, and Reveal to capture, evaluate, and understand program performance on Cray XE and Cray XK

systems. It is a hundred-page document packed with useful information.

Also see the tutorial “Performance Measurement andAnalysis Tools for the Cray XK System”, Heidi Poxon, Cray Inc.

at https://www.olcf.ornl.gov/wp-content/uploads/2013/01/performance_tools2.pdf

Alternatively, you may create your Cray PAT documentation using the pat_help command:
 pat_help all . > all_pat_help.txt
 pat_help report all . > all_report_help.txt
The man page for pat is also a source of useful information (man pat | col –b > craypat_man.txt).

13.2 OSS
There is a Quick Start Guide and a detailed User Manual available online:
http://www.openspeedshop.org/wp/wp-
content/uploads/2013/12/OSSQuickStartGuide2013revised.pdf

http://www.openspeedshop.org/wp/wpcontent/uploads/2014/02/OpenSpeedShop_2.1_User_Manual.
pdf

13.3 TAU
TAU Tutorial is here: http://tau.uoregon.edu/tau.ppt
More about TAU can be found on the About Page, or browse the Online documentation on the
Documents Page.

13.4 Allinea MAP
Allinea DDT and MAP User Guide
http://content.allinea.com/downloads/userguide.pdf

